Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

نویسندگان

  • Zahra Hemmatian
  • Scott Keene
  • Erik Josberger
  • Takeo Miyake
  • Carina Arboleda
  • Jessica Soto-Rodríguez
  • François Baneyx
  • Marco Rolandi
چکیده

In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioelectronic silicon nanowire devices using functional membrane proteins.

Modern means of communication rely on electric fields and currents to carry the flow of information. In contrast, biological systems follow a different paradigm that uses ion gradients and currents, flows of small molecules, and membrane electric potentials. Living organisms use a sophisticated arsenal of membrane receptors, channels, and pumps to control signal transduction to a degree that is...

متن کامل

Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels

From cell-to-cell communication to metabolic reactions, ions and protons (H+) play a central role in many biological processes. Examples of H+ in action include oxidative phosphorylation, acid sensitive ion channels, and pH dependent enzymatic reactions. To monitor and control biological reactions in biology and medicine, it is desirable to have electronic devices with ionic and protonic curren...

متن کامل

Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis.

We showed in a previous study that associations of antimicrobial peptides (AMPs), which are key components of the innate immune systems of all living species, with the fluoroquinolone enrofloxacin can successfully cure HeLa cell cultures of Mycoplasma fermentans and M. hyorhinis contamination. In the present work, the in vitro susceptibility of M. pulmonis, a murine pathogen, to enrofloxacin an...

متن کامل

Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis.

In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model ...

متن کامل

Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor

In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016